Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 20425
1.  
i

Функ­ция y=\ctgx не опре­де­ле­на в точке:

1)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  минус Пи
3)  дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
5)  минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби
2.  
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  35°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.

1) 60°
2) 55°
3) 38°
4) 30°
5) 25°
3.  
i

На ри­сун­ке изоб­ра­жен гра­фик дви­же­ния ав­то­мо­би­ля из пунк­та O в пункт N. Ско­рость дви­же­ния ав­то­мо­би­ля на участ­ке MN (в км/ч) равна:

1) 72 км/ч
2) 90 км/ч
3) 36 км/ч
4) 108 км/ч
5) 144 км/ч
4.  
i

Ре­зуль­тат раз­ло­же­ния мно­го­чле­на x (4ab) + b − 4a на мно­жи­те­ли имеет вид:

1)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
4) x
5) x плюс 1
5.  
i

Если 4x плюс 13=0, то 8x плюс 39 равно:

1) −17
2) 17
3) 16
4) 13
5) −13
6.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния 3 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 3 пра­вая круг­лая скоб­ка минус 3 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка имеет вид:

1) 3 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2x плюс 3, зна­ме­на­тель: 2x конец дроби пра­вая круг­лая скоб­ка
2) 27
3) 3 в сте­пе­ни левая круг­лая скоб­ка 4x плюс 3 пра­вая круг­лая скоб­ка
4) 26 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка
5) 9
7.  
i

Вы­чис­ли­те  ло­га­рифм по ос­но­ва­нию дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ко­рень из: на­ча­ло ар­гу­мен­та: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец ар­гу­мен­та 8 пра­вая круг­лая скоб­ка .

1) 1
2) 0,5
3) 0
4) −0,5
5) −1
8.  
i

Даны числа: 0,35 · 106; 3,5 · 105; 3500; 35 · 10−4; 0,0035. Ука­жи­те число, за­пи­сан­ное в стан­дарт­ном виде.

1) 0,35 · 106
2) 3,5 · 105
3) 3500
4) 35 · 10−4
5) 0,0035
9.  
i

Пло­щадь круга равна 49 Пи . Диа­метр этого круга равен:

1) 7
2) 14
3) 49
4) 14 Пи
5) 7 Пи
10.  
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 32. Пло­щадь его бо­ко­вой по­верх­но­сти равна:

1) 32 Пи
2) 16 Пи
3) 64 Пи
4) 32
5) 64
11.  
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=132°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.

1) 90°
2) 132°
3) 66°
4) 180°
5) 48°
12.  
i

На одной чаше урав­но­ве­шен­ных весов лежат 4 яб­ло­ка и 2 груши, на дру­гой  — 2 яб­ло­ка, 4 груши и гирь­ка весом 80 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 1500 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.

1) 95
2) 100
3) 105
4) 115
5) 110
13.  
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: x в квад­ра­те минус 36, зна­ме­на­тель: 5x в квад­ра­те минус 29x минус 6 конец дроби .

1)  дробь: чис­ли­тель: x минус 6, зна­ме­на­тель: 5x минус 1 конец дроби
2)  дробь: чис­ли­тель: x минус 6, зна­ме­на­тель: 5x плюс 1 конец дроби
3)  дробь: чис­ли­тель: x плюс 6, зна­ме­на­тель: 5x плюс 1 конец дроби
4)  дробь: чис­ли­тель: x плюс 6, зна­ме­на­тель: x плюс 1 конец дроби
5)  дробь: чис­ли­тель: x плюс 6, зна­ме­на­тель: 5x минус 1 конец дроби
14.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 4x + c, равно −1. Тогда зна­че­ние c равно:

1) 3
2) 4
3) 5
4) −5
5) −13
15.  
i

Окруж­ность за­да­на урав­не­ни­ем x в квад­ра­те минус 4x плюс 4 плюс y в квад­ра­те =a плюс 4 и про­хо­дит через вер­ши­ну па­ра­бо­лы y=6 плюс левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка в квад­ра­те . Най­ди­те ра­ди­ус этой окруж­но­сти.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 104 конец ар­гу­мен­та
3) 10
4) 5
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 96 конец ар­гу­мен­та
16.  
i

Упро­сти­те вы­ра­же­ние 3 синус левая круг­лая скоб­ка 11 Пи плюс альфа пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 15 Пи , зна­ме­на­тель: 2 конец дроби минус альфа пра­вая круг­лая скоб­ка .

1)  минус 2 синус альфа
2)  минус 4 синус альфа
3) 2 синус альфа
4) 4 синус альфа
5) 4 ко­си­нус альфа
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но на­ча­ла ко­ор­ди­нат и про­хо­дит через точку A (2; 10). Зна­че­ние вы­ра­же­ния k + b равно:

1) −8
2) 2
3) 5
4) 10
5) 12
18.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния 3 синус в квад­ра­те x плюс ко­си­нус x плюс 1=0.

1)  Пи
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
3)  Пи минус арк­ко­си­нус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби
5)  арк­ко­си­нус дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
19.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 1 конец дроби плюс 1= дробь: чис­ли­тель: 10, зна­ме­на­тель: x в квад­ра­те плюс 2x плюс 1 конец дроби .

20.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 5x плюс 36 конец ар­гу­мен­та =x в квад­ра­те плюс 5x плюс 36.

21.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 7 умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 x пра­вая круг­лая скоб­ка =245 плюс 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 7 пра­вая круг­лая скоб­ка равна ...

22.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 3 ко­рень из 3 .

23.  
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 2 м, M2O = 9 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?

24.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x в квад­ра­те плюс 6x плюс 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 4 минус x в квад­ра­те конец дроби \geqslant0.

25.  
i

Ре­ши­те не­ра­вен­ство  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка боль­ше или равно левая круг­лая скоб­ка 5 минус ко­рень из: на­ча­ло ар­гу­мен­та: 24 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 4x плюс 25, зна­ме­на­тель: x плюс 4 конец дроби пра­вая круг­лая скоб­ка . В от­ве­те за­пи­ши­те сумму целых ре­ше­ний, при­над­ле­жа­щих про­ме­жут­ку [−20; −2].

26.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 11 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс 11 пра­вая круг­лая скоб­ка боль­ше 0.

27.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |8x минус 23| минус |6x минус 5|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

28.  
i

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми, рав­ны­ми 1 и 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , вра­ща­ет­ся во­круг оси, со­дер­жа­щей его ги­по­те­ну­зу. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 9V, зна­ме­на­тель: Пи конец дроби , где V  — объём фи­гу­ры вра­ще­ния.

29.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше 22 равно ...

30.  
i

Трое ра­бо­чих (не все оди­на­ко­вой ква­ли­фи­ка­ции) вы­пол­ни­ли не­ко­то­рую ра­бо­ту, ра­бо­тая по­оче­ред­но. Сна­ча­ла пер­вый из них про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Затем вто­рой про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. И, на­ко­нец, тре­тий про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Во сколь­ко раз быст­рее ра­бо­та была бы вы­пол­не­на, если бы трое ра­бо­чих ра­бо­та­ли од­но­вре­мен­но? В ответ за­пи­ши­те най­ден­ное число, умно­жен­ное на 12.